Intraseasonal to Seasonal Forecasting of Tropical Cyclone Formations: Comparison of Model Results using both CFSv1 and CFSv2 Forcing

David Meyer and Tom Murphree Naval Postgraduate School

murphree@nps.edu and david.statistical.solutions@gmail.com

Typhoons Tembin (15W) and Bolaven (16W) 27 Aug 2012

Presented to the 37th Climate Prediction and Diagnostics Workshop Fort Collins, CO, 22–25 Oct 2012

Quick Look at TC Formation Forecasting skill Using CFSv1 and CFSv2 Forcing of Statistical Models

Using a CFSv2 driven forecasting system shows significant improvement in many ways:

- 1. In side by side comparison for 2011 using both inputs we found:
 - a) For roughly equivalent skill, CFSv2 captures formations with a 25% reduction of the area of a CFSv1 driven forecast (weekly forecasts)
 - b) Less ensembling required to get skillful forecasts (large reduction in processing time)
 - c) For daily forecasts, CFSv2 forecasts were typically slightly more skilled
- 2. Other observations:
 - a) CFSv2 normally good at capturing the effects of the MJO at a 2 week lead
 - b) Anecdotal evidence that it captures the effects of smaller scale, lower frequency events such as Kelvin waves and equatorial Rossby waves
 - c) Clear evidence *CFSv1* correctly captures the effects of ENSO months in advance
 - d) The CFSR based model has much improved year round performance

But are CFS driven forecasts of TC formation even skillful?

Forecasting of Tropical Cyclogenesis in the Western North Pacific

NPS Statistical-Dynamical Forecast Method

Build statistical model based on relationships between TC formations and LSEFs** (based on JTWC best track and NCEP R2/CFSR data)

Apply statistical model of TC formation probability (NPS logistic regression model)

<u>Force</u> statistical model with dynamical, ensemble-based, long range forecasts of LSEFs** (use NCEP Climate Forecast System v1/v2)

Produce statistical-dynamical model output: ensemble-based long range forecasts of TC formation probabilities (NPS TC LRFs, 0-90 day lead times)

- ** LSEFs = large scale environmental factors: SST, ζ_{850} , shear₂₀₀₋₈₅₀, div₂₀₀, f
- 1. Statistical model used with CFSv2 input is different from the previous model
- 2. LSEFs (Gray 1975) are necessary but not sufficient for TC formation

One day lead forecasts:

- 1. Uses the four daily (00, 06, 12...) CFSv2 24 lead forecasts of the LSEFs
 - a) 4 ensemble members used
 - b) Actually about 36 hrs time late (12hrs behind real time)
- 2. Shared daily with CPC and JTWC
- 3. Have an exceptional POD
 - a) Hits on 44 out of 47 storms (2011-2012), using 2.5° neighborhood
- 4. Suggest that Dr. Gray was right
 - a) Regions with all LSEFs favorable frequently experience tropical cyclogenesis
 - b) Not all regions with favorable conditions result in formation (necessary but not sufficient)
 - c) Regions with one or more unfavorable conditions rarely result in cyclogenesis
- 5. Suggest necessary but <u>more</u> sufficient the LSEFs are so favorable formation is a near certainty
 - a) This also may indicate that our minimum contour is too low
- 6. The average total area of favorable LSEFs (Jun through Nov, 2011) is only 3.6% of the marine portion of the WNP within 0-30N, 100-180E
- 7. Highlight the ambiguity over when exactly cyclogenesis occurs.
 - a) Favorable, even strongly favorable conditions may be forecasted before the first JTWC TCFA or best track initial point
 - b) Conditions post formation often little changed compared to conditions prior to formation
- 8. All forecasts are objective and fully automated

1 day lead TC formation probability forecast, issued (YYYYMMDD): 20120922, valid:20120923

1 day lead TC formation probability forecast, issued (YYYYMMDD): 20120923, valid:20120924

1 day lead TC formation probability forecast, issued (YYYYMMDD): 20120924, valid:20120925

1 day lead TC formation probability forecast, issued (YYYYMMDD): 20120925, valid:20120926

1 day lead TC formation probability forecast, issued (YYYYMMDD): 20120926, valid:20120927

Hit: 20W, 1 day lead TC formation probability forecast, issued (YYYYMMDD): 20120927, valid:20120928

Hit: 21W, 1 day lead TC formation probability forecast, issued (YYYYMMDD): 20120928, valid:20120929

Hit: W-20, 4 day lead TC formation probability forecast, issued (YYYYMMDD): 20110919, valid:20110923

Hit: W-21, 4 day lead TC formation probability forecast, issued (YYYYMMDD): 20110920, valid:20110924

4 day lead TC formation probability forecast, issued (YYYYMMDD): 20110921, valid:20110925

miss: W-22, 4 day lead TC formation probability forecast, issued (YYYYMMDD): 20110922, valid:20110926

1 and 4 Day Lead Forecast of TC Formation Probability: A Comparison for the Same Valid Day

Four day lead forecasts:

- 1. Uses two daily (00, 06, 12...) lagged ensemble CFSv2 forecasts (96 and 120 hrs) of the LSEFs
 - a) Ensembling required to improve skill
 - b) Typically our least skilled forecast, but it is the longest lead skilled forecast with a weather pattern look
 - c) Has the expected temporal and spatial errors and sometimes predicts features that will not exist
 - d) The CFSv2 version of this forecast appears to have less error, and requires half the ensembling of the v1 version
 - e) Hits on 34 out of 47 storms (2011-2012)
- 2. Shared daily with CPC and JTWC
- 3. The average total area of favorable LSEFs (Jun through Nov, 2011) is only 5.8% of the marine portion of the WNP within 0-30N, 100-180E
- 4. Forecasts are objective and fully automated

Week 1 and Week 2 Outlooks of TC Formation Probability

Weekly Forecast Verification Methods: Qualitative

Forecasts consistent with climatology and the time of year.

Forecasts consistent with the MJO phase and ENLN state.

Week 1 and Week 2 Outlooks of TC Formation Probability

Weekly Outlooks:

- 1. Uses 5 daily (00, 06, 12...) lagged ensemble CFSv2 forecasts of the LSEFs to generate a single 10 (week 1) or 17 (week 2) day lead forecast
 - a) 20 ensemble members per daily forecast (compare to 80 for the v1 version)
 - b) Seven consecutive 10 or 17 day lead forecasts are averaged together to form respective weekly outlooks
 - c) 140 ensemble members used per weekly outlook (compare to 1120 for v1)
 - d) Extensive ensembling greatly reduces the weather pattern view, and is more like a composite derived from Monte Carlo simulation
 - e) The CFSv2 version of this forecast requires about one tenth of the ensembling of the v1 version while having comparable skill
 - f) Hits on 38 out of 45 storms (2011-2012)
- 2. Clear capability to capture the effects of the MJO on TC formation probabilities (never observed with CFSv1 forced forecasts).
- 3. Likewise, we have observed v2 driven forecasts correctly capturing the effects of Kelvin waves and equatorial Rossby waves.
- 4. CFSv1 driven forecasts correctly capture the effect of ENLN
- 5. Shared weekly with CPC and JTWC
- 6. The average total area of favorable LSEFs (Apr Nov, 2011) is 13% of the marine portion of the WNP within 2.5-30N, 100-180E, a 25% reduction from v1 forecasts
- 7. Forecasts are objective and fully automated

Extended (monthly) Outlooks of TC Formation Probability

1.6e-04

3.0e-04

4.3e-04

5.7e-04

7.0e-04 8.4e-04

9.7e-04

1.1e-03

Extended (monthly) Outlooks of TC Formation Probability

O-Indicates region where TC formation would be very unusual by forecast, yet is very active by climatology

Extended (monthly) Outlooks of TC Formation Probability

Monthly Outlooks:

- 1. Uses 5 daily (00, 06, 12...) lagged ensemble CFSv2 forecasts of the LSEFs to generate a single 30, 60, or 90 day lead forecast
 - a) 20 ensemble members per daily forecast (up to 140 for the v1 version)
- 2. Thirty consecutive 30, 60, or 90 day lead forecasts are averaged together to form monthly outlooks valid for the current month, or at a 1 or 2 month lead
 - a) 600 ensemble members used per 30 day outlook
- 3. Observed to capture the effects of ENLN (v1)
- 4. Advantages of the CFSv2 driven monthly outlooks
 - a) Very high POD
 - b) Smaller forecasted area than that forecasted by CFSv1
 - c) Much less ensembling required for comparable skill
 - d) Gives important amplifying details to seasonal forecasts
 - e) Monthly outlook contours actually cover less of the WNP than the weekly forecasts while equaling skill
- 5. Disadvantages:
 - a) The many contoured regions are awkward to interpret
 - b) Does not have the sensitivity of the weekly forecasts (cannot see the weekly influence of an MJO event)
- 6. Forecasts are objective and fully automated

Improvements Made to the NPS TC Forecasting System

Underway:

To be started soon:

- 1. Adjust minimum contours after 2012 verification
- 2. Expand forecast regions to ENP and ATL (preliminary work has been done with promising results)
- 3. Take TC intensity forecasting system operational. Preliminary WNP work was very promising
- 4. Begin work on TC track forecasting
- 1. Generate Generate a model index to numerically categorize the likelihood of occurrence in the next week, 2 weeks, month, and up to three months
 - a) Goal is to further reduce the man in the loop and
 - b) Create our own seasonal forecasting product based on long lead forecasts of TC formation probability

Long Range Forecasting of Tropical Cyclones: Contact Information

Tom Murphree, Ph.D.

Research Associate Professor Department of Meteorology Naval Postgraduate School 254 Root Hall 589 Dyer Road Monterey, CA 93943-5114 831-656-2723 office 831-402-9603 cell 831-656-3061 fax murphree@nps.edu

David Meyer

Operations Research Analyst
Statistical Solutions LLC
3746 Mesquite Drive
Beavercreek, OH 45440
937-912-5510 office
831-233-8438 cell/office
david.statistical.solutions@gmail.com

Questions?

Quantitative Forecasting System Skill Assessment, 30 Day Lead Forecasts, Jun-Nov 2010

- Performance metrics calculated on a weekly basis for consistency with CPC's weekly GTH forecast
- 2. A 2.5° neighborhood was used on observations (radius)
 - Weekly outlooks created by averaging 7 days worth of daily 30 day lead forecasts

PC: Proportion Correct, POD: Probability of Detection, FAR: False Alarm Ratio, HSS: Heidke Skill Score, ETS: Equitable Threat Score, PCA: proportion of WNP contoured by forecasts, FARN: False Alarm Ratio for forecasted non-formation

- 1. System performance stability: 2010 performance comparable to 2009 and preliminary 2011 results
- 2. Additional indicator of good skill: positive Brier Skill Scores
- 3. No comparable forecasts at these leads available from other sources

Quantitative Forecasting System Skill Assessment, 60 Day Lead Forecasts, Jun-Nov 2010

- Performance metrics calculated on a weekly basis for consistency with CPC's weekly GTH forecast
- 2. A 2.5° neighborhood was used on observations (radius)
- 3. Weekly outlooks created by averaging 7 days worth of daily 6- day lead forecasts

PC: Proportion Correct, POD: Probability of Detection, FAR: False Alarm Ratio, HSS: Heidke Skill Score, ETS: Equitable Threat Score, PCA: proportion of WNP contoured by forecasts, FARN: False Alarm Ratio for forecasted non-formation

- 1. System performance stability: 2010 performance comparable to 2009 and preliminary 2011 results
- 2. Additional indicator of good skill: positive Brier Skill Scores
- 3. No comparable forecasts at these leads available from other sources

Quantitative Forecasting System Skill Assessment, 90 Day Lead Forecasts, Jun-Nov 2010

- Performance metrics calculated on a weekly basis for consistency with CPC's weekly GTH forecast
- 2. A 2.5° neighborhood was used on observations (radius)
 - 3. Weekly outlooks created by averaging 7 days worth of daily 90 day lead forecasts

PC: Proportion Correct, POD: Probability of Detection, FAR: False Alarm Ratio, HSS: Heidke Skill Score, ETS: Equitable Threat Score, PCA: proportion of WNP contoured by forecasts, FARN: False Alarm Ratio for forecasted non-formation

- 1. System performance stability: 2010 performance comparable to 2009 and preliminary 2011 results
- 2. Additional indicator of good skill: positive Brier Skill Scores
- 3. No comparable forecasts at these leads available from other sources